
Geosoftware II, WiSe 2018/19

Enhancing discovery of geospatial

datasets in data repositories

Daniel Nüst, Edzer Pebesma

November 21, 2018

1 Introduction

Geosoftware II provides a challenge to groups of geoinformatics students to apply
their technological and conceptual skills. Students cooperate to solve a realistic
and relevant spatial issue with computer science methods. This semester, the
challenge lies in extending existing software projects with geospatial capabili-
ties and quickly break in to the areas of geospatial catalogues and repository
platforms.

The teachers take the role of the customer, depending on the chosen base
platform either a data repository operator or a geospatial catalogue operator.
The customer publishes a problem statement and an invitation to bid1 for solv-
ing the problem. The student groups are the contractor, i.e. the architects,
designers, and developers of a software system to advance the state-of-the-art
in scholarly discovery. Each group bids with their own approach to the project,
implements it, and presents it to the customer.

Veranstaltungsnummer im Vorlesungsverzeichnis: 144929

1https://en.wikipedia.org/wiki/Invitation for bid

1

https://studium.uni-muenster.de/qisserver/rds?state=verpublish&status=init&vmfile=no&publishid=276579&moduleCall=webInfo&publishConfFile=webInfo&publishSubDir=veranstaltung
https://en.wikipedia.org/wiki/Invitation_for_bid


2 Invitation to bid

2.1 Problem statement

A large value, or potentially a trap for the consumer, in online shopping lies in
recommendation systems. These systems suggest similar products based on all
or specific customer’s shopping behaviour. In a similar vein, discovering related
works and similar research is a challenge for scientists. The challenge applies to
their own work (who is working in my area of expertise or region of interest?)
and finding relevant literature (what publications exist on topic X?).

With the increased requirements by funding agencies to publish data in open
repositories, this project should tap into the wealth of published research data
and provide new ways to connect and discover datasets based on their geospatial
properties. By extending our catalogue platform and data repository, we except
to gain a significant advantage over competitors.

2.2 State-of-the-art

The discovery of scientific publications today is largely based on full text & key-
word search, editorial decisions (i.e. scholarly journals), social networks (Twit-
ter, word of mouth), and citations. If a researcher is lucky, a literature survey
for the topic of interest exists, which may have utilised all of the above meth-
ods. Academic search engines, such as Google Scholar or ScienceOpen, allow re-
searchers to harness full text search capabilities across millions of articles. How-
ever, full text search is often limited to titles, authors, and abstracts, as the copy-
right of articles often does not allow free access. The available data often stems
from citation databases (e.g. CrossRef, DOAJ). They have structured metadata
on scholarly publications, largely due to the need to properly reference other
works and the need to track impact of an article. Google recently announced2 a
new service for Dataset Discovery (https://toolbox.google.com/datasetsearch)
but it is a closed system3 In general, these databases do not include or ex-
pose spatial and spatio-temporal metadata or specific metadata for parts of a
research project, e.g. licenses for related data or code. Kmoch et al.4 demon-
strate extraction of spatial information from full texts of research articles by
using geocoding, but such processes are not common.

It is also widely acknowledged that geospatial data poses specific challenges
for archival and preservation, see e.g. Janée et al. (2008)5 and Clark (2016)6

The quality of existing publication metadata is usually good, if an article is
published in a journal or as a preprint, due to the editorial process of journals.
During this process all metadata is provided by author and editorial staff in
a manual fashion. Because the practices of Open Science become increasingly

2Cf. https://www.blog.google/products/search/making-it-easier-discover-datasets/
3See Kraker P. (2018). Google is capitalizing on a movement that they have contributed

nothing to. Elephant in the Lab. https://doi.org/10.5281/zenodo.1434695
4https://meetingorganizer.copernicus.org/EGU2018/EGU2018-14542.pdf
5https://dl.acm.org/citation.cfm?id=1378912, PDF download
6https://doi.org/10.1080/15420353.2016.1185497

2

https://toolbox.google.com/datasetsearch
https://www.blog.google/products/search/making-it-easier-discover-datasets/
https://doi.org/10.5281/zenodo.1434695
https://meetingorganizer.copernicus.org/EGU2018/EGU2018-14542.pdf
https://dl.acm.org/citation.cfm?id=1378912
http://www.ngda.org/research/Tech%20Arch/jcdl-paper.pdf
https://doi.org/10.1080/15420353.2016.1185497


widespread, data and code are often published alongside research articles, either
as supplemental material or in the form of a research compendium. But these
metadata rarely include spatio-temporal information.

Public and free data repositories provide safe storage and identification of
data and files using DOIs, for example Zenodo, OSF, or b2share. These data
repositories are mainly file dumps, i.e. they provide appropriate access (e.g.
syntax highlighting, previews) and management (e.g. version control), but do
not process contents of the files to leverage contained information.

On the geospatial side, geospatial catalogues provided standardised access
to structured metadata based on standardised formats (i.e. OGC CSW). GDAL
is the core library for reading and writing many different data formats. It is
used by almost all geospatial software projects and can be integrated in any
programming language.

Document databases (e.g. Elasticsearch) index spatial data and allow sorting
of search results by distance.

None of the mentioned platforms or websites utilise geospatial (meta)data,
or expose similar works on the same platform using text, data, or metadata in
their UI or API.

2.3 Project goals

This project will close the gap between geospatial data formats and repositories
respectively geospatial metadata catalogues and similarity measurements.

Project groups will extend an existing Free and Open Source Software (FOSS)
project with the functionality to retrieve and view similar records. This com-
prises both the API and UI, namely providing an HTTP endpoint to retrieve an
ordered list of records based on a provided record and displaying/linking similar
records in a detail view of a record respectively.

Two base software projects are possible:

• a repository platform

• a geospatial catalogue

We make the following assumptions:

1. the number of scholarly analysis leveraging geospatial data increases

2. geospatial aspects of data have a unique potential to integrate and connect
works and people across disciplines (transdisciplinarity)

3. developers and operators of data repository solutions do not have the
necessary expertise or resources to evaluate the potential of geospatial
(meta)data for discovery

4. the customer operates both a repository platform and a geospatial cat-
alogue, but the contractor is free to suggest a base platform to extend
within the boundary conditions, see 2.4.4.

3

https://research-compendium.science/


The new system must take into consideration different target groups:

• scientists searching for similar or related work (during research, writing
manuscripts, or evaluating papers)

• preservationists improving access to research outputs (data, articles)

• operators of data repositories or catalogue services who want to easily
integrate similarity measures in their deployment

Further requirements and the process to fulfil them are detailed in the re-
mainder of this document.

4



2.4 Requirements

2.4.1 Functional requirements

The main functionality of the web-based platform is browsing and searching
records with geospatial properties.

Extraction

FE001
Supported geospatial (meta)data formats: GeoPackage, NetCDF, GeoJ-
SON, Shapefile, CSV on the Web, ISO 191xx, GeoTIFF

FE002
A CLI tool to extract geospatial extent at different levels of detail (bound-
ing box or a single feature, i.e. polygon, line, point) from a single file

FE003
A CLI tool to extract the temporal extent from a single file

FE004
A CLI tool to extract geospatial and temporal extent from a directory of
files

FE005
Metadata extraction for a specific record can be triggered via an API call
by all logged-in users, which immediately updates the record’s metadata

FE006
Metadata extraction is automatically triggered for new uploaded records
to the base software

FE007
Metadata extraction during creation of a new record runs as an indepen-
dent process (i.e. it does not need to complete for record creation to
complete)

API

FA001
All user-facing functionality is available via RESTful HTTP API end-
points

FA002
API endpoints return valid JSON in responses, including errors

FA003
API endpoints use appropriate HTTP status codes

FA004
Geospatial data in the API is encoded using GeoJSON (RFC 7946)

5

http://geojson.org/


FA005
Enhanced metadata, i.e. including the temporal and geospatial informa-
tion extracted from files, are included in the regular metadata for records
(no special endpoint)

FA006
With the parameter similar=n added to a request to read a record, the
response is enhanced with ids and similarity scores for n many similar
records

Similarity calculation

FS001
API endpoint providing the similarity score of two records based on the
bounding box of all data in the record; records are provided as their
repository-specific ID

FS002
API endpoint providing a sorted list of similar records for a repository-
specific record ID; the length of the returned list can be defined by the
user, a maximum length can be configured server-side

FS004
The similarity value is normalised in the interval [0, 1[

FS005
The input record is never included in the list of similar records

FS006
The similarity value takes the data type into consideration for the types
vector, raster, or timeseries, i.e. a similarity value for two records
with same extent is higher if data types match as well

UI

FU001
A configurable number of similar records is displayed on a page for viewing
a single record (must not be integrated with existing UIs for the base
software)

Configuration

FC001
All configuration of additional functionality is possible via plain text files,
e.g. YAML format, and ideally integrated with configuration mechanisms
of the base software

FC002
The configuration is at least active after restarting the service

6



Bonus feature One bonus feature from the following list or own ideas for
features must be completed.

• extend existing UI to show similar datasets in a search result display

• include source code or text in similarity calculation

• use > 1000 real world records in a demo deployment

• similarity supports fuzzy matches and advanced geometries (beyond bound-
ing box)

• Create a static yet reproducible infographic of spatial and temporal prop-
erties of all records, on-demand via an API

• geospatial search and map-based browsing of records

• The similarity score is configurable per request, e.g. weights can be as-
signed to aspects such as data type, extent, and the type of the score is
configurable (at least two different algorithms)

Bonus feature decisions must be submitted one month before final submission
and must be formally accepted by the customer. The chosen feature must be
mentioned clearly in the project documentation and underlies the same non-
functional requirements as regular features.

Only one contractor may implement each feature (first come first
serve).

2.4.2 Test data

An appropriate number of test datasets must be listed in the bid, but there must
be at least one record per supported file format. Test data must be published
under an open licenses and its provenance must be documented clearly. Test
and demonstration data should be taken from existing online repositories to
ensure practical relevance, realism, and geographical spread.

Examples for dataset searches:

• ”Open” ”Nc” on Zenodo

• ”geotiff” on https://pangaea.de

• ”shapefile” on B2SHARE

• ”geopackage” on Figshare

7

https://en.wikipedia.org/wiki/Infographic
https://zenodo.org/search?page=1&size=20&q=netcdf&file_type=nc&access_right=open
https://pangaea.de/?q=geotiff
https://b2share.eudat.eu/records/?q=shapefile&sort=mostrecent&page=1&size=10
https://figshare.com/search?q=geopackage&searchMode=1


2.4.3 Non-functional requirements

Maintainability The developed software must be published as open source
under an OSI-approved license according to the license requirements and taking
into account the licenses of other used or extended software. The contractor
must ensure license compatibility.

An established build and configuration system as well as dependency man-
agement must be applied for the used Programming language, e.g. Gradle for
Java, or npm for JavaScript. According documentation on building, configuring
and installing the system must be provided in Markdown-formatted documen-
tation files using the appropriate markup for lists, links, etc.

User friendliness The system must support intuitive use to the extend that
targeted groups can use its main (non-bonus) features without further docu-
mentation. Common practices for web-based user interfaces and interaction
paradigms should be applied.

Performance The response time of an API call to a repository may increase
no more than a factor of 2 when related projects are listed, as compared to not
showing related projects.

In general, a next page must be displayed within 1 second to allow users to
stay focused on their current train of thought; complex page contents may be
loaded asynchronously; interactive visualisations must react within 0.1 seconds
to give a user the impression of direct manipulation.7

The contractor provides a test script to evaluate the performance using at
least 10 different URLs or views with an appropriate number of repetitions.

2.4.4 Deployment

Docker must be used to ensure easy deployment. Used images must be based on
Dockerfiles and hosted on Docker Hub (or comparable). If base projects have
existing Docker images or Dockerfiles, they should be extended.

Boundary conditions The language of the user interface is English.

One of the following projects must be used as a basis. Other base projects
must be formally accepted by the customer.

• Invenio

• DSpace

• GeoNetwork (CSW)

• pycsw (CSW)

• sat-api (STAC)
7Source: http://www.nngroup.com/articles/powers-of-10-time-scales-in-ux/

8

http://opensource.org/licenses 
https://invenio.readthedocs.io/en/latest/
https://duraspace.org/dspace/
https://geonetwork-opensource.org/
http://pycsw.org/
https://www.developmentseed.org/blog/2018/07/23/stac-and-sat-api/
http://www.nngroup.com/articles/powers-of-10-time-scales-in-ux/


2.5 Project management

The contractor shall apply an agile development process, e.g. oriented at Scrum.
The customer must be given access to the contractor’s online task management
to observe the progress. The contractor may include the customer in regular
meetings for updates and feedback on the progress.

2.6 Delivery contents

The bid (Pflichtenheft8) must be submitted to the customer via WWU’s Learn-
web no later than October 31st, 14:00 CET. It must comprise an implemen-
tation plan for all required features from the invitation to bid (Lastenheft) as
well as a schedule for the implementation as a single PDF document. The bid
document may be English or German. Its content should follow common stan-
dards for content and structure of bids.

The final delivery must be submitted one day in advance of the final pre-
sentation (to be scheduled). It consists of the following items:

1. project report (using screen-shots, referencing requirements from this doc-
ument, including the references to all following items) as a single PDF
document, submitted via Learnweb

2. commented source code on zivgitlab, GitLab.com, or GitHub.com in one
repository; delivery in more than one repository must be formally accepted
by the customer

3. ready-to-use Docker images (if applicable with docker-compose configura-
tion)

4. installation documentation

5. integrated user documentation (i.e. within the regular UI)

6. API test suite (e.g. as documented curl requests or a Postman/SoapUI
project)

7. operational installation on a server (provided by the customer)

2.7 Acceptance criteria

The acceptance criteria encompass the fulfilment of all functional and non-
functional requirements as described in the concept and schedule, and the com-
plete and on-time delivery of all items listed in section 2.6.

8https://de.wikipedia.org/wiki/Pflichtenheft, https://wiki.induux.de/Pflichtenheft, and
http://www.infrasoft.at/downloads/Anleitung zum Pflichtenheft.pdf

9

https://de.wikipedia.org/wiki/Pflichtenheft
https://wiki.induux.de/Pflichtenheft
http://www.infrasoft.at/downloads/Anleitung_zum_Pflichtenheft.pdf


3 Seminar organisation

3.1 Learning objectives

1. make project management experiences, including group work, task man-
agement, coordination

2. learn to work for a customer, in a process similar to typical business pro-
cedures (invitation to bid, communication, submission)

3. extend established software projects and re-use libraries where appropriate

4. handle large open source projects (install, maintain, develop further, even
in new programming languages)

5. develop specific features as small independent open source projects

6. deepen knowledge and skills in software development (e.g. collaboration
platform GitLab)

10



3.2 Timetable

The seminar consists of five phases spread over the whole winter semester and
the prior semester break.

Phase Content Dates

Initial training get to know a relevant topic and
prepare it for the fellow seminar
members in a handout and pre-
sentation (10 mins presentation
+ 5 mins discussion lead by pre-
senters); customers present in-
vitation to bid at first meeting;
questions on bid and groups an-
nounced at second meeting

first two meetings

students are split up into teams;
deadline for project plan and final presentation date are announced

planning project groups create concept
and schedule for the implemen-
tation of the tender

two
weeks/meetings

implementation project groups implement their
solution, revising documentation
and concepts along the way; spe-
cial phases: project peer review
(around Christmas/New Year),
pre-release (three weeks before fi-
nal presentation)

about 11
weeks/meetings
as needed

presentation project groups present their solu-
tion to the customers, peers, and
guests

final course meeting
(end of January)

report each student creates short re-
port on contributions and lessons
learned

mid February

11

https://github.com/Geosoft2/geosoft2-2014-fundamentals/blob/master/code-review.md


3.3 Efforts and grading

9 ECTS correspond to 270 working hours. Assuming 24 hours for preparing and
attending initial & final presentation and 10 hours for the individual report and
the peer review, that leaves 236 hours over 10 weeks (not counting Christmas
holidays) for the implementation. Assuming 16 hours preparation during the
semester break this gives an average workload of 16.9 hours per week during
the semester for each student.

What Work load (hrs) Grade contribution

initial training, presentations &
report (talk preparation, atten-
dance, final presentation, per-
sonal report)

36 20%

planning (Pfilchtenheft, Zeit-
plan)

32 15%

implementation (incl. techni-
cal documentation, peer eval-
uation, demonstration, regular
meetings)

200 65%

Grading is based on code contributions on the software development plat-
form. Therefore, we require each student to contribute under their own ac-
count.

A fork & pull development model is highly encouraged because it allows to
list the relevant pull requests in a final personal report presenting learning
achievements, role in the team, personal contributions in a single PDF document
(max. 3 pages).

We strongly encourage vertical splitting of tasks (a student works on UI,
backend, and installation) instead of horizontal (one team member does main-
tenance, another backend, a third frontend) even at the cost of effectiveness.

12



3.4 Initial training

See https://github.com/Geosoft2/geosoft2-2018 for topics, submission pro-
cess, and requirements for the initial training sessions.

1. scholarly publishing: history and future

2. academic search engines

3. data publishing requirements in science

4. publication metadata

5. research data lifecycle & best practices

6. metadata extraction

7. FOSS repositories & preservation

8. geodata catalogues & geospatial metadata

9. geospatial data formats & libraries

10. time series data formats & libraries

11. spatial similarity calculation

12. agile collaborative software development

13

https://github.com/Geosoft2/geosoft2-2018

	Introduction
	Invitation to bid
	Problem statement
	State-of-the-art
	Project goals
	Requirements
	Functional requirements
	Test data
	Non-functional requirements
	Deployment

	Project management
	Delivery contents
	Acceptance criteria

	Seminar organisation
	Learning objectives
	Timetable
	Efforts and grading
	Initial training


